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Abstract

The advantages of the finite-difference-time-domain (FDTD) method are often hampered by the need to model large
‘‘white spaces’’ between and around scattering objects. In the continuous realm, these large spaces are customarily bridged
by the usage of integral operators that transform the sources to any observation point using an appropriate Green’s func-
tion. A companion procedure for the discretized world can be realized in principle by straightforward sampling of the con-
tinuous Green’s function. However, such a procedure does not track the FDTD algorithm and hence yields different
results. Alternatively, an FDTD-compatible discrete Green’s function is derived in this work with the Yee-discretized Max-
well’s equations as first principles. The derivation involves a process of counting many combinations of paths in the spa-
tial–temporal grid leading to recursive combinatorial expressions that are solved in closed form. Numerical
implementations of the resultant Green’s function in short-pulse propagation problems produce results validated by con-
ventional FDTD computations. The advantages of efficient computations over large distances, in particular with regard to
short pulses, are thus demonstrated.
� 2007 Elsevier Inc. All rights reserved.
1. Introduction

The finite-difference-time-domain (FDTD) method is a popular discretization scheme for the time-domain
Maxwell’s equations in their differential form. It has been used extensively to model a variety of electromag-
netic problems, such as radiation, scattering and high speed circuits. The method employs central difference
approximations for the derivatives sampled over the Yee grid [1,2] that ensure second order accuracy and
an explicit formulation, amenable to marching-on-in-time, leapfrog type of solver. Like most differential meth-
ods, it is very compact in terms of memory allocation and computational time, having a OðNÞ computational
complexity for each timestep, where N is the number of field samples within the computational domain. As is
well known, this domain is bounded by absorbing boundary conditions (ABCs) of either the local or the glo-
bal type. For any given computer configuration, the size of the computational domain and the temporal span
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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will eventually be limited by the available computer resources due to the need to execute the FDTD for each
one of the N points at each time step. Another well known issue [2] is dispersion, including band-stop frequen-
cies, anisotropy and stability, associated with FDTD solution. Therefore, these solutions will not be equal, in
general, to companion solutions obtained via continuous Kirchoff-type integrals (e.g., [16]). In the case of the
FDTD, certain applications such as multi-body problems or evaluations of the field in constrained regions
only, the mathematical operations are performed also within a large ‘‘white space’’ outside the regions of inter-
est. By bridging over these regions with Kirchoff-type integrations, the advantages of the FDTD can be sig-
nificantly enhanced. Additional emerging applications [4–7] now call for a fusion of the FDTD and integral
operators. In these applications, discretization schemes are sometimes applied to the integral operators that
contain the continuous form of the Green’s functions and are not compatible with the FDTD scheme. A per-
fect match with unbounded FDTD computations can never be achieved in this way. Therefore, in both types
of applications, the need has arisen to produce FDTD-compatible discrete formulations to the integral oper-
ators as well. The essence of these formulations is the generation of a Discrete Green’s Function (DGF).

One way to obtain the impulse response is via an inverse transform of the Z-domain [8] version, as done
in [9]. A time domain DGF has been presented in [10,11] as a series of infinite products of Jacobi polyno-
mials, whose relation to the expression below still calls further investigation. Initial work in the time domain
has been recently presented in [12]. The DGF, derived therein, serves for characterizing the external domain
in the context of efficient global boundary conditions. In [12], and subsequently in [13,14], the evaluation of
the DGF has been done in a straightforward numerical fashion, augmented with some experimental
formulas.

In this work, a systematic discrete time domain derivation of the DGF is presented. The starting point is the
Yee-discretized version of Maxwell’s system of equations, seen as a linear and time-invariant discrete state-
space system, whose inputs and outputs are the (electric and magnetic) current density sources and the (electric
and magnetic) fields, respectively, and whose impulse response is the DGF. The two cases aperture and free
space source problems are defined in Section 2. The Yee-discretized Maxwell’s equations are represented in
graph form in the spatial–temporal space as described in Section 2. The two problems are cast in terms of path
counts within the graph, and solved in closed form via combinatorial considerations. The aperture problem
involves modifications of the Catalan triangle [15], while the free space source problem makes use of modifi-
cations of the Pascal triangle, as described in Sections 3.1 and 3.2, respectively. The closed form solution for
the DGF is expressed as an inherently finite series in powers of the �c2, c being the Courant number. Further
development, designed to truncate the spatial domain in order to accommodate arbitrary boundary condi-
tions, is described in Section 4. The results can be verified by comparison to the frequency domain, multi-
dimensional inverse Z-transform presented in [9], and the direct numerical evaluation for the the special case
in [12–14]. Further verification is done in Section 5, where numerical simulations are shown for a one-dimen-
sional pulse propagation. The DGF solution is seen to coincide with the conventional FDTD computation.
The capability of using the Green’s function approach in the context of the FDTD is thus validated, as sum-
marized in Section 6.

2. Graph representation of the FDTD method

Continuous domain Green’s functions such as Ge(r, r 0; t � t 0) are used as kernels in Kirchoff-like integra-
tions of electric (J(r 0, t 0)) and magnetic (Jm(r 0, t 0)) current sources to obtain the observed electric field E(r, t)
within a volume C, enclosed by a closed surface oC [16, Section 1.1]:
Eðr; tÞ ¼ l
o

ot t
Z

oC;t0
Jeq

s ðr0; t0Þ �Geðr; r0; t� t0ÞdS0dt0 þt
Z

oC;t0
Jeq

ms �r0 �Geðr; r0; t� t0ÞdS0dt0

þl
o

ot

Z Z Z Z
C;t0

Jðr0; t0Þ �Geðr; r0; t� t0ÞdV 0dt0 þ
Z Z Z Z

C;t0
Jmðr0; t0Þ �r0 �Geðr; r0; t� t0ÞdV 0dt0

ð1Þ
where Jeq
s ðr0 2 oC; t0Þ ¼ n̂�Hðr0; t0ÞjoC and Jeq

msðr0 2 oC; t0Þ ¼ �n̂� Eðr0; t0ÞjoC in Eq. (1) are the equivalent sur-
face sources defined over oC. Note that the region C need not necessarily be free space. Reducing Eq. (1) to the
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one-dimensional z-dependent case, and consider separately the contributions of the surface and volume
sources, as shown in Eqs. (2a) and (2b), respectively:
Exðz; tÞ ¼ l
o

ot

Z
t0

J eq
sx ðza; t0ÞGeðz� za; t � t0Þ þ J eq

sx ðzb; t0ÞGeðz� zb; t � t0Þ
� �

dt0

þ
Z

t0
J eq

msyðza; t0Þ
oGeðz� za; t � t0Þ

oz0
þ J eq

msyðzb; t0Þ
oGeðz� zb; t � t0Þ

oz0

� �
dt0; ð2aÞ
or
Exðz; tÞ ¼ l
o

ot

Z Z z0¼zb

z0¼za;t0
Jðz0; t0ÞGeðz� z0; t � t0Þdz0 dt0 þ

Z Z z0¼zb

z0¼za;t0 ;
J mðz0; t0Þ

oGeðz� zb; t � t0Þ
oz0

dz0 dt0 ð2bÞ
where the planes oCa at z = za and oCb at z = zb form the closed surface bounding the computational domain c
on the left and right sides, respectively as seen in Fig. 1. Also, J eq

sx ðza; t0Þ ¼ �H yðza; t0Þ, J eq
sx ðzb; t0Þ ¼ Hyðzb; t0Þ,

J eq
msyðza; t0Þ ¼ Exðza; t0Þ, J eq

msyðzb; t0Þ ¼ �Exðzb; t0Þ, and the polarization has been set without loss of generality.
Henceforth, we refer to the cases of Eqs. (2a) and (2b) as aperture and free space source problems, to be trea-
ted individually in Sections 3.1 and 3.2, respectively.

It is our goal to obtain an FDTD-compatible companion to both cases of Eq. (2). The integrations in both
aperture and free space cases involve the usage of a DGF as the discrete counterpart of either Ge or oGe

oz . For the
reasons stated in Section 1, we start with the Yee-discretized Maxwell’s equations, as first principles, rather
then discretizing Eq. (2) directly. For a homogeneous and lossless medium, these equations are as follows:
oEx

ot
¼ � 1

e
oH y

oz
� 1

e
J x ) Exjnþ1

k ¼ Exjnk � c Hy j
nþ1

2

kþ1
2

� H y j
nþ1

2

k�1
2

þ DzJ xj
nþ1

2
k

� �
ð3aÞ

oH y

ot
¼ � 1

l
oEx

oz
� 1

l
J my ) Hy j

nþ1
2

kþ1
2

¼ Hy j
n�1

2

kþ1
2

� c Exjnkþ1 � Exjnk þ
Dz
g

J my jnkþ1
2

� 	
ð3bÞ
where z = kDz, t = nDt, g ¼
ffiffil
e

p
, and c ¼ c Dt

Dz is the Courant coefficient, and normalization of the E-fieldffiffi
e
l

q
E! E, is also introduced. The source terms in Eq. (3) constitute either the equivalent or actual sources

appearing in the models of Eqs. (2a) and (2b), respectively, making Eq. (3) applicable to both models. We
now transfer Eq. (3) (without the source terms) to a graph representation as shown in Fig. 2. Detail A in
Fig. 2 embodies Eq. (3a). In this Detail, Exjnþ1

k is defined at an ‘‘observation point’’, being connected via di-

rected segments to H y j
n�1

2

k�1
2

, Exjnk and Hy j
nþ1

2

k�1
2

that are located at their respective ‘‘initial points’’ adjacent to the

observation point, with the weights marked on the segments. Detail B serves a similar purpose for Eq. (3b).
Each of the initial points serves in turn as an observation point for other three initial points in the same
manner.

Consider the spatial–temporal (k–n) FDTD grid in Fig. 3. Assume that a pulsed field is given at the initial
point A. The pulse is then propagated through the grid over paths formed by causal cascades of segments, and
the information collected at arbitrary observation points such as B. All causal paths are contained within the
rhombus shown, and the complementary areas are defined as ‘‘dead zones’’. Each of the paths contributes a
Fig. 1. One-dimensional spatial–temporal space.



Fig. 2. Graph representations of Eqs. (3a) (Detail A) and (3b) (Detail B).
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power of �c2 generated from the product of different upward-left directed, upward-right directed and verti-
cally directed segments, i.e., of �c, c and 1, respectively. The number of vertical segments within the path
is i P 0, registering the path as a member in a group of paths of order i. Consider first the collection of all
paths of the group i = 0. This collection comprises diagonal segments only, yielding the highest power of
�c2. For observation point B, one such path traces half the perimeter of the rhombus at either side, contrib-
uting the c8 factor as the highest power for the case of Fig. 3. The collection of paths of the opposite extreme
case, yielding c0, contains only one path, i.e., the vertical straight line connecting the initial and observation
points A and B, respectively. Intermediate powers of �c2 are produced by paths with a varying number of
vertical (and hence diagonal) segments. The problem of finding the field at observation point B as an outcome
of initial point A thus translates into finding the number of different paths within a collection of the same
power of �c2. The result will take the form a finite power series in �c2.

As an example, consider the evaluation of the field at observation point C in Fig. 4 as a function of the field
at the initial point A. Three collections of paths between the points A and C can be identified with i = 0 (diag-
onal segments only), i = 1 (one vertical segment), and i = 2 (two vertical segments) as shown in Fig. 5. The
total path counts are 15, 20 and 6, for the three collections. There are no paths with vertical segments only
in this case. The resultant formula for the Green’s function is then
Exjn¼3
k¼1 ¼ Exjn¼0

k¼0 � ð15c6 � 20c4 þ 6c2Þ: ð4Þ

In order to formulate a general procedure for counting the number of paths within each group, we define the
path count vector (PCV) comprising components of different orders at any observation point. At the obser-
vation point B, the PCV is b = (b0,b1,b2, . . . ,bi). Each one of the PCV components bi is a combination of sim-
ilar components of x = (x0,x1,x2, . . . ,xi), y = (y0,y1,y2, . . . ,yi) and z = (z0,z1,z2, . . . ,zi), where y is the PCV at
Y on the vertical straight path, and x and z are at X and Z on the left and right diagonals leading to B, respec-
tively, as seen in Figs. 3 and 6. These combinations are



Fig. 3. Spatial–temporal grid with structure of paths leading to point B.

Fig. 4. Spatial–temporal grid with structure of paths leading from point A to point C.
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b0 ¼ x0 þ z0

b1 ¼ x1 þ z1 þ y0

..

.

bi�1 ¼ xi�1 þ zi�1 þ yi�2

bi ¼ yi�1

ð5Þ
This procedure can be applied to all points in the spatial–temporal grid of Fig. 3. The PCVs for all points for a
signal originating at the initial point A are marked in Fig. 7. The PCV components, as seen in the figure, have



a b

c

Fig. 5. Collection of between initial point A and observation point C in Fig. 4: (a) 15 paths with diagonal segments only, (b) 20 paths with
one vertical segment and (c) 6 paths with two vertical segments.

Fig. 6. Path count vectors (PCVs) leading to point B whose combination is given by b (see also Eq. (5)). The PCV components are
associated with different powers of �c2.
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been found by straightforward counting at this stage. However, the main goal of this work is a general for-
mulations as given below.

3. Combinatorial development

3.1. Aperture excited by magnetic current: the Catalan triangle and its modification

We first address the aperture problem defined in Eq. (2a). Considering Fig. 8, we define C as the half space
z > 0, with the aperture oCa being the straight line k ¼ 1

2
and supporting a magnetic impulsive current source

Jm backed by a perfect electric conductor (PEC), i.e., the problem is wholly formulated by the following reduc-
tion of Eq. (2a):



Fig. 8. Aperture excited by magnetic current.

Fig. 7. Path count vectors (PCVs) for all points in the space–time grid for a signal originating at the initial point A.
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Exðz; tÞ ¼
Z

t0
J eq

msyðza; t0Þ
oGeðz� za; t � t0Þ

oz0
dt0: ð6Þ
One can regard this current as an equivalent source, representing an electric aperture field Ea sampled at
k = 0, as shown in Fig. 9. Solving for the PCVs in this case results in modified Catalan numbers (MCNs),
where the unmodified Catlan numbers form the Catalan triangle [15], as shown below.

As a first step, consider the i = 0 component of the PCV. The solution for this problem is embodied in the
Catalan numbers
Cl;m ¼
ðlþ mÞ!ðl� mþ 1Þ

m!ðlþ 1Þ! ð7Þ
that form triangle in its conventional form (see Fig. 10). The numbers are interrelated by the recursive
relationship
Cl;m ¼ Cl�1;m þ Cl;m�1; 0 6 m 6 l: ð8Þ

Using a simple transformation, the indices (l,m) are traded for (n,k), the latter pair coinciding with the con-
ventional spatial–temporal pair:
Cn;k ¼
ð2nÞ!ð2k þ 1Þ

ðn� kÞ!ðnþ k þ 1Þ! ;
k 6 n

ðn; kÞ 2 0; 1; 2; . . .f g or

ðn; kÞ 2 1
2
; 3

2
; . . .

� � ð9Þ



Fig. 10. The Catalan triangle.

Fig. 9. Equivalent aperture with electric field.
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The Cn;k numbers form a tilted and flipped modification of the Catalan triangle shown in Fig. 11. The PCV
component for 0 < i 6 n are the MCNs denoted Ri

n;k, that have the added dimension provided by the index
i. In view of Fig. 6, the MCNs are equal to the summation of the PCVs of the left diagonal, right diagonal
and vertical adjacent initial points of orders i, i and i � 1, respectively. Added together, they comprise Eq.
(10) as follows:
Ri
n;k ¼ Ri

n�1
2;k�

1
2
þRi

n�1
2;kþ

1
2
þRi�1

n�1;k; ð10aÞ

n P 0; k P 0; i P 0 ð10bÞ
k 6 n ð10cÞ
6 n� k þ 1 ð10dÞ
with ðn; kÞ 2 f0; 1; 2; . . .g or ðn; kÞ 2 f1
2
; 3

2
; . . .g. The boundary and initial conditions are
Fig. 11. Flipped and tilted Catalan triangle.
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R0
n;nþ1 ¼ R0

n;�1
2
¼ R�1

n;k ¼ 0 and R0
0;0 ¼ 1; ð11Þ
respectively.
Eqs. (10)–(11) can be used to compute the path count numerically. While the computations complexity of

implementing (10) is of the same order of the conventional FDTD, note that this computation is independent
of both the source and c, therefore it can be performed beforehand for many problems related to a given
geometry. In the one-dimensional aperture and free space models, treated in this Section and in Section
3.2, respectively, a closed form evaluation using combinatorial considerations is developed below.

For an arbitrary i, the MCNs are given by
Ri
n;k ¼

ð2n� iÞ!ð2k þ 1Þ
i!ðn� k � iÞ!ðnþ k � iþ 1Þ! ð12Þ
as can be proven by mathematical induction. Note that the special case i = 0 coincides with Eq. (10). As men-
tioned above, the MCNs provided by Eq. (12) are used as the coefficient in the weighted summation of powers
of �c2 to construct the DGF, as detailed in Section 2. The lowest order MCNs appear in Fig. 12.

3.2. Source problem in free space: application of the Pascal triangle and its modification

The free space model of Eq. (2b) is treated next. Consider the case of an electric current source only, for
which (2b) reduces to
Exðz; tÞ ¼ l
o

ot

Z Z z0¼zb

z0¼za;t0
Jðz0; t0ÞGeðz� z0; t � t0Þdz0 dt0: ð13Þ
For a planar source at z = 0 exciting the entire free space k 6 0, one notes that all the PCVs with i > 0 are
modified Pascal numbers (MPNs) obeying the following recursive rule, (see Figs. 2 and 6 and Eq. (5)):
Pi
n;k ¼ Pi

n�1
2;k�

1
2
þ Pi

n�1
2;kþ

1
2
þ Pi�1

n�1;k ð14aÞ

n P 0; i P 0 ð14bÞ
jkj 6 n ð14cÞ
i 6 nþ 1� jkj; ð14dÞ
Fig. 12. Lowest order PCVs in the time-space region as modified Catalan numbers.
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with fn 2 f0;þ1; . . .g and k 2 f0;�1; . . .gg or n 2 þ 1
2
;þ 3

2
; . . .

� �
and k 2 � 1

2
;� 3

2
; . . .

� �� �
. The boundary

and the initial conditions are
1 En
k

P0
n;nþ1 ¼ P0

n;�n�1 ¼ P�1
n;k ¼ 0; and P0

0;0 ¼ 1; ð15Þ
respectively. The recursive Eq. (14) is solved to yield the following MPNs:
Pi
n;k ¼

ð2n� iÞ!
i!ðn� k � iÞ!ðnþ k � iÞ! : ð16Þ
For c = 1, we have
Pn�k

i¼0 ð�1ÞiRi
n;k ¼ 1; k 6 n, as can also be seen by inspection of Fig. 7. This formulation is

still to be adapted to physical scenarios.
Two-dimensional formulation. An initial generalization to two dimensions is as follows. A four sided pyra-

mid is built from two Pascal triangles, with its apex at the origin of the spatial–temporal coordinates. The pyr-
amid comprises 2D modified Pascal numbers Hi

n;k;p, adhering to the following generalization of (14):
Hi
n;k;p ¼ Hi

n�1
2;k�

1
2;p
þHi

n�1
2;kþ

1
2;p
þHi

n�1
2;k;p�

1
2
þHi

n�1
2;k;pþ

1
2
þHi�1

n�1;k;p ð17Þ
with x = kDx, y = pDy. Its solution is the generalization of (16) into two dimensions:
Hi
n;k;p ¼

ð2n� 2iÞ!ð2n� iÞ!
i!ðnþ k þ p � iÞ!ðn� k þ p � iÞ!ðnþ k � p � iÞ!ðn� k � p � iÞ! ; 0 6 p; k 6 n: ð18Þ
At this point, this solution requires adaptation to either the TE or TM case.

3.3. Evaluation of the Green’s function for the aperture case using modified Catalan numbers

Consider the aperture problem of Section 3.1 with an electric field at k = 0 and its equivalent magnetic cur-
rent at k ¼ 1

2
, (see Fig. 9 and a representative waveform at the left of Fig. 13). A bounded trapezoidal region

that contains all paths of the propagating field is identified, as shown in the figure. This trapezoid is depicted
for the temporal duration n = (0–8). Note that for general location (n,k) within the trapezoid, En

k involves con-
volutions of the spatial–temporal source vector with the DGF1; e.g., En¼8

k¼5 contains the contribution from the
source vector containing the components Ea(n),n = 0, 1, 2, 3. For example, Fig. 14 shows the contributions
from Ea(0) to the observation point (8,5), expressed as the following weighted summation over powers of
�c2 with the PCVs as the coefficients:
ð19Þ
is now used as a shorthand for Exjnk .



Fig. 13. Region of propagation characteristics for the aperture problem.

Fig. 14. Finding the field at n = 8, k = 5 as a function of the excitation at the zero position at n = 0.
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A similar weighted summation for the case Ea(1) takes the form
ð20Þ



Fig. 15. Finding the field at n = 8, k = 5 as a function of the excitation at the zero position at n = 2.
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The case n = 2 is shown in Fig. 15. Finally, the trapezoid representing the contribution by Ea(3) to point
(n = 8,k = 5) degenerates to a straight line, with the pertinent equation being
ð21Þ
One can now assemble all the above contributions, arriving at
En
k ¼

Xn�k

m¼0

Em
0 ð�cÞ �

Xn�m�k

i¼0

Ri
n�m�1

2;k�
1
2
� ð�cÞ2 k�1

2ð Þ � ð�c2Þn�m�k�i

" #
; k P

1

2
ð22Þ
(the case k = 0 indicates the given aperture field). This equation can be cast in the form of a convolution of the
spatial–temporal source vector with the DGF as follows:
En
k ¼

Xn�k

m¼0

Em
0 Gn;m

k ¼ E0
0 E1

0 � � � En�k
0


 � Gn;0
k

Gn;1
k

..

.

Gn;n�k
k

0BBBBB@

1CCCCCA; k P
1

2
; ð23Þ
where a typical Green’s function component is defined as the following convolution expression:
Gn;m
k ¼ ð�1Þk

Xn�m�k

i¼0

Ri
n�m�1

2;k�
1
2
ð�c2Þn�m�i

: ð24Þ
Transferring Eq. (23) into matrix form, define now the DGF vector comprising the components defined in
(24):
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ðGn
kÞ

t
,

Gn;0
k

Gn;1
k

..

.

Gn;n�k
k

0BBBBBB@

1CCCCCCA ¼

Pn�k

i¼0

Ri
n�1

2;k�
1
2
ð�1Þ�kð�c2Þn�i

Pn�k�1

i¼0

Ri
n�3

2;k�
1
2
ð�1Þ�kð�c2Þn�i�1

Pn�k�2

i¼0

Ri
n�5

2;k�
1
2
ð�1Þ�kð�c2Þn�i�2

..

.

P0
i¼0

Ri
k�1

2;k�
1
2
ð�1Þ�kð�c2Þk�i

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

ð25Þ
where ðGn
kÞ

t denotes the transpose of the row vector Gn
k , such that
En
k ¼ Gn

k �

E0
0

E1
0

..

.

En�k
0

0BBBBBBB@

1CCCCCCCA
: ð26Þ
The detailed Eq. (25) shows the form of another level of convolution
Gn
k ¼

½ð�1Þn�k�c2ðnÞ

½ð�1Þn�k�1�c2ðn�1Þ

½ð�1Þn�k�2�c2ðn�2Þ

..

.

½ð�1Þ0�c2ðkÞ

0BBBBBBBBB@

1CCCCCCCCCA

t

�

R0
n�1

2;k�
1
2

0 0 . . . 0

R1
n�1

2;k�
1
2

R0
n�3

2;k�
1
2

0 . . . 0

R2
n�1

2;k�
1
2

R1
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The field over the entire region after n time steps, resulting from a temporal pulse at k = 0, is
ð28Þ
where the vectors Gn
k were indicated in Eq. (27). Their sizes depend upon the spatial–temporal separation be-

tween initial and observation points, ranging from a maximum of n for En
1 to a minimum of n � k for En

k . The
temporal field at the spatial point k as a function of a temporal pulse at k = 0 is
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A companion formulation for the magnetic field can be obtained along similar lines.

3.4. Recursive method for calculating field points using MCNs

In this section, an efficient evaluation of the electric field via the convolution of the source with Gn;m
k (Section

3.3) is described. To this end, we start with the explicit expression for Eq. (24) for, say, m = 0 (see the first
column of Gn

k in Eq. (27)):
Gn;0
k ¼

½ð�1Þn�k�c2ðnÞ
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¼ c2kRn�k
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ð30Þ
with ða; bÞ ¼ n� 1
2
; k � 1

2


 �
. Computation of the MCNs in (30) poses the challenge of high computational com-

plexity due to rapid growth of the MCNs with k and n (see Eq. (12) and Fig. 12). In order to overcome this
obstacle, one can reorder the algebraic operations in the last line of Eq. (30) as follows:
Gn;0
k ¼ Rn�k

a;b � c2k 1�
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a;b
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 !
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 ! ! !
: ð31Þ
Define
N
i
a;b,

Ri
a;b

Riþ1
a;b

¼

ð2a� iÞ!ð2bþ 1Þ
i!ða� b� iÞ!ðaþ b� iþ 1Þ!
ð2a� i� 1Þ!ð2bþ 1Þ

ðiþ 1Þ!ða� b� i� 1Þ!ðaþ b� iÞ!

¼ ðiþ 1Þð2a� iÞ
ða� b� iÞðaþ b� iþ 1Þ ð32Þ
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and augment (31) to obtain the entire the Green vector (Eq. (25)) as follows:
ðGn
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ð33Þ
where
T n�k
ða;bÞ ¼ 1�N

n�k�1
a;b c2ð1�N

n�k�2
a;b c2ð1� � � � c2ð1�N

0
a;bc

2Þ � � �ÞÞ ð34Þ
with T 0
k�1
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1
2
¼ 1 and R0

k�1
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1
2
¼ 1. Using (33) with (26), one has
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Again, reordering the algebraic operation in Eq. (35) in the same manner as Eq. (32), we have
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Defining Mi
a;b,

Ri
a;b

Ri�1
a�1;b
¼ ð2a�iÞ

i and using R0
k�1

2;k�
1
2
¼ 1, we finally arrive at Eq. (37) that contains no factorials,

thus affording a very efficient two-dimensional recursive computation of the Green’s function - source convo-
lution (12):
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Note that for the case c = 1 in Eq. (27), one can show that
R0
n;k ¼ 1; k ¼ n ð38aÞXn�k

i¼0

ð�1ÞiRi
n;k ¼ 0; k < n ð38bÞ
that can also be verified by inspection of Fig. 12. Therefore, in this case En
k ¼

Pn�k
l¼0 El

0 � di;n�k ¼ En�k
0 as expected

for the dispersion-free case.
3.5. Assessment of computational complexity as compared with the FDTD

Since the DGF can also be computed by the straightforward FDTD method, the question of possible com-
putational advantages of either method arises. The first factor in favor of the this analytical approach is the
fact that the once the coefficients have been found, the DGF is available for all values of c and all sources,
while the FDTD computation needs to be repeated for each of these values. The analytical method then
has an edge that depends on the required flexibility in the use of c and thus cannot be quantified. Another
factor is related to pulse width relative to the distance traversed by the pulse. Consider a pulse that is quite
narrow such that most of the information is contained in the area around the characteristic k = n. For
k = n, we have only one diagonal path, representing a single cn term. For this case, the DGF series is one-
dimensional, containing the term R0

k�1
2;k�

1
2
¼ 1 only, hence the computational complexity can be regarded as

Oð1Þ (see Eq. (33)). Define the dimensionality of the Green’s vector in Eq. (33) as w, where w is also the dis-
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tance of a given spatial point from the edge k = n. For such a point, each term in Eq. (33) has a computational
complexity that is linear with the order of that term. Summing up all of these terms, the resultant computa-
tional complexity for this point becomes Oðw2Þ.

The total computational region of interest is contained within a spatial window W = wmax, defined, say, by
the given pulse. The ultimate computational cost is therefore OðW 3Þ. This value may be compared with the
computational cost of the conventional FDTD, that is OðknÞ. Obviously, the present method will have the
advantage for relatively small values of W, in particular for pulses that have traversed long spatial distances,
i.e., where the total computational region is large. In cases where the observation point is far from the char-
acteristic, a straightforward FDTD computation may serve the purpose better, as has been done in [12–14]. In
the latter cases, the GDF was computed over the boundary of the computational domain only, to account for
possible reflections from the external domain. Obviously, if the external domain is free space, then only
numerical dispersion artifacts are responsible for such reflections, since the center of the pulse has long prop-
agated beyond the boundary, i.e., the observation coordinates are as far from the characteristic as can be. It
should, however, be noted that for cases like this, the FDTD can be replaced by the recursive formulas such as
(10) and (14) and (17). While being of the same complexity as the FDTD, these formulas provide a desirable c-
independent solution.

4. Incorporation of arbitrary boundary conditions

The foregoing discussion has been related to the free space case, where all causal paths are counted. Trun-
cation of the spatial domain by boundaries such that the vertical line in Fig. 16 should be considered in cases
when (a) a certain boundary condition is imposed in the vicinity of the boundary, or (b) when the computa-
tional domain is to be characterized as a building block in the context of domain decomposition (diakoptic)
construction of the entire space, using its scattering or impedance/admittance parameters. For cases such as
these, a revised formulation is needed, where interaction with the points beyond the boundary is left to the
additional boundary condition, i.e., paths that pass through these points are not counted. In this way, one
can accommodate the option of other boundary conditions in the form of additional relationships between
field points at the vicinity of the boundary. In the absence of such relationships, the straightforward omission
of these paths, or the annulment of the fields beyond the boundary translates into hard boundaries such as
PEC or PMC.

In order to evaluate the field at the point of interest at (n,k) = (N,Z) (the encircled point in Fig. 16), one
needs first to find the free space PCVs R or P given by Eqs. (12) and (16) for the aperture and dual region
problems, respectively. The foregoing formulations for both problems are identical, therefore we define
Q ¼ Por R. One is then required to subtract all PCV elements leading from the points ðn; Z þ 1

2
Þ, adjacent
Fig. 16. The modified triangle in the time-space region.
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to the right hand side of the red line in Fig. 16, to (N,Z) from Q. For each of these points, the PCV elements to
be subtracted are the products of (a) the path counts Qi

n;Zþ1
2
, where Z þ 1

2
< n < N � 1

2
, and (b) the PCV ele-

ments between these points and (N,Z), i.e., the MCNs Ri
N�n;12

. The summation of all these products is now
subtracted from Q, leading to the net path count eQ. Starting with i = 0, we have
Fig. 17
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For arbitrary values of i, the following equation holds:
eQi
N ;Z ¼ Qi

N ;Z �
XN�1

2

h¼Zþ1
2

Xi

s¼0

Qi�s
½ðNþZÞ�h�;Zþ1

2
�R;0s

h� Zþ1
2ð Þ½ �

� �
: ð40Þ
5. Numerical simulations: one-dimensional pulse propagation

As an example for the aperture problem, we choose the following pulse as describing the electric field at
z = 0 (see Fig. 17(a)):
PðnÞ ¼
sinaðpN nÞ; 0 6 n 6 N

0; elsewhere

�
ð41Þ
with a = 2. The pulse is sampled at the rate of M = 10 samples per wavelength and propagated using the DGF
as developed for the aperture problem in Section 3 and compared with a conventional FDTD run. The spec-
tral content of the pulse is shown in Fig. 17b for three values of a, although the example below pertain to a = 2
only as shown in the green curve in the figure. The frequency is normalized as X = xDt. One can compare this
spectral content to the FDTD pass-band (termed ‘‘real numerical wavenumber regime’’ in [2]), bounded by
Xcutoff = p,1.846, 1.287, 0.82 and 0.403 for c = 1, 0.8, 0.6, 0.4 and 0.2, respectively. The main lobe and first
sidelobe of the spectrum are supported by the pass-band for c P 0.6. For c = 0.4, only the main lobe is within
the pass-band. This low pass smoothing effect thus becomes more visible as the value of c decreases.

The comparison for the two methods is shown in Fig. 18 in the form of snapshots taken at t ¼ sDt ¼ sc k
10c,

where s is the number of timesteps, such that t ¼ 6k
c for all values of c. The FDTD and DGF solutions
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Fig. 18. Pulse propagation for the aperture problem after 45 timesteps using conventional FDTD (solid blue lines) and the Discrete
Green’s function of Section 3 (dashed lines emphasized with stars) for c = 0.99999, 0.8, 0.6, 0.4 and 0.2, ((a)–(e), respectively). (For
interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)
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virtually overlap, as expected. A typical difference between the two curves is of the order of 10�14, depending on
the computer precision. This limited time span is used as an example for the computation over the entire domain,
as must be done in the context of the conventional FDTD. For longer time spans, the evaluation can be
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restricted to a spatial window around the active region of the pulse, thereby avoiding the need to provide field
values throughout the entire computational domain. A snapshot of the pulse at t ¼ 50k

c and at t ¼ 100k
c within a

limited spatial window is shown in Fig. 19, for the different values of c. The FDTD results have been obtained in
the conventional manner over the entire spatial region.

6. Conclusions

The discrete time domain Green’s function has been derived in this work from the first principles of the
discretized Maxwell’s equations in the context of the Yee grid. Analytical expressions for the one-dimensional
case have been derived in full and their merits demonstrated numerically by duplicating results obtained via
conventional FDTD computations. The two- and three-dimensional cases still needs to be demonstrated. It is
conceivable that hybrid numerical and analytical procedures will be formulated for the multi-dimensional and
more complex cases. These results can find many applications, including hybridization of differential and inte-
gral discrete formulation for absorbing boundary conditions and diakoptic construction of the computational
domain, and for bridging the gap over large regions of white spaces in multi-object scattering problem, to
name but a few.
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